Radically – Listorati https://listorati.com Fascinating facts and lists, bizarre, wonderful, and fun Wed, 03 Jan 2024 18:48:56 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 https://listorati.com/wp-content/uploads/2023/02/listorati-512x512-1.png Radically – Listorati https://listorati.com 32 32 215494684 10 Iconic Structures That Might Have Looked Radically Different https://listorati.com/10-iconic-structures-that-might-have-looked-radically-different/ https://listorati.com/10-iconic-structures-that-might-have-looked-radically-different/#respond Wed, 03 Jan 2024 18:48:56 +0000 https://listorati.com/10-iconic-structures-that-might-have-looked-radically-different/

We instantly recognize famous landmarks—the Great Pyramids, the Leaning Tower of Pisa, the Golden Gate Bridge, and other architectural and engineering marvels. They are images that come with easy familiarity. But imagine an alternate reality where the names are attached to structures that are bafflingly strange and unrecognizable. Well, let’s take a tour of such an alternate reality and look at ten well-known landmarks and structures that could have turned out quite differently.

Related: 10 Amazing Ancient Buildings Still In Use Today

10 The White House

Washington, D.C., was a city in its infancy when George Washington launched a competition for the design of the future mansion of the U.S. President in 1792. It drew in many proposals, from professional architects and amateurs alike, with styles ranging from pre-Revolutionary War Georgian to Neoclassical. Ultimately, it was Irish-born architect James Hoban’s design, based on the Leinster House in Dublin, that was chosen.

However, in our alternate universe, let us pretend that the entry chosen was the one conceived by none other than the future third president, Thomas Jefferson, who was a fan of classical European architecture. It might have been an unfortunate clerical error that credited the anonymously submitted design to one Abraham Faws.

Jefferson’s vision for the executive mansion included a columned porch and a dome, which is a prominent feature of classical architecture. Though Jefferson’s entry didn’t quite make it, he would go on to add his own touches to the White House once he moved in: colonnades, a carriage path, and a stable.[1]

9 The Arc de Triomphe

In our alternate universe, Paris might probably be renowned for a gargantuan elephant. And it would have been called L’elephant Triomphal.

The present monument, a landmark on the Parisian landscape, was inspired by the Arch of Titus in Rome and was commissioned by Napoleon Bonaparte after his great victory in Austerlitz in 1805. However, 45 years earlier, an architect named Charles Ribart proposed a wackier monument on the same site on the Champs Elysees.

Ribart designed a giant elephant, hollow inside with chambers that could be accessed by a spiral staircase ascending from the entrance. The ornate, three-story beast would be large enough to hold banquets and balls. Outside, there would be a garden watered via a drainage system hidden in the elephant’s trunk.

French officials were not impressed nor amused, however, and rejected Ribart’s insane design.[2]

8 Chicago Tribune Tower

The ambitious and powerful newspaper magnate Robert McCormick wanted “the most beautiful office building in the world” to be the headquarters of his influential Chicago Tribune. To this end, he started a design competition in 1923 that would fulfill his dream. In response, 260 architects from 23 countries flooded the jury with a vast range of choices.

The winning entry, by John Howells and Raymond Hood, resulted in the Gothic skyscraper that now stands on Michigan Avenue. While the building has since earned the praise of critics, in the beginning, it was scorned by no less than the godfather of Chicago architecture himself, Louis Sullivan, who said it “evolved from dying ideas.”

In fact, many preferred the second-place design of Finnish architect Eliel Saarinen over the winner. A late entry, Saarinen’s concept of a modern, minimalist tapering tower tipped the jury into a frenzy of indecision. Though it ultimately narrowly lost out to Howells and Hood, it was hailed as the herald of a new era in American architecture, one that boldly freed itself from the past. Today, buildings like Cleveland’s Key Tower and Charlotte’s Bank of America Corporate Center use elements of what might have been the Tribune Tower.[3]

7 Sydney Opera House

If there is anything that defines Sydney, it has to be the concrete shells of the Sydney Opera House, standing like billowing sails over Sydney Harbor. Jorn Utzon’s masterpiece was chosen out of the 200-plus entries in the competition for the building’s design. But had the second-place entry been selected, Sydney might have had a landmark that was a cross between a submarine and a seashell.

The design was conceived by seven architects called the Philadelphia Collaborative Group. Like Utzon, they took inspiration from the nearby sea to create a nautilus-like spiral structure that was praised for being “robust” and “well-suited” to the seaside location. The brutalist design also featured full-height windows and a roof of folded concrete sheathed in copper. The latest techniques in concrete technology would have been used to turn the concept into reality.[4]

6 Statue of Liberty

Had Frederic Bartholdi’s original plan carried through, the Statue of Liberty would have been a veiled Muslim woman guarding the Suez Canal rather than the Roman goddess Libertas watching over New York Harbor.

Recent research has uncovered the sculptor’s original vision for the statue, an Egyptian peasant woman (fellaha) holding a torch aloft to represent Egypt’s social and industrial progress marked by the opening of the canal. It would be 86 feet (26 meters) tall on a pedestal that was 48 feet (14.5 meters) high. “Egypt Bringing Light to Asia” would also function as a lighthouse.

Egyptian officials, still reeling from the expenses incurred by the canal, didn’t warm up to Bartholdi’s idea. The rest is history: Bartholdi exchanged the Egyptian fellaha for a European woman and sent her to New York City, where she stands to this day—”Liberty Enlightening the World.”[5]

5 Eiffel Tower

Quick myth-busting fact: Gustav Eiffel did not design the Eiffel Tower. Rather, he headed a construction company specializing in steel structures, which employed two brilliant engineers: Emile Nouguier and Maurice Koechlin. It was Koechlin who drew up the initial plans for the curving tower that would grace the Paris Exposition of 1889 and, together with Nouguier, presented the draft to Eiffel for approval. The company’s architect, Stephen Sauvestre, further refined the plans, adding decorative touches of his own—glass rooms, arches, and stone pedestals.

One of Sauvestre’s additions, conceived when the structure was already up and proving to be a big draw, was two smaller towers on both sides of the main structure, making a segmented triad rather than the single, sweeping tower we are familiar with. The added infrastructure was meant to facilitate the movement of visitors up, down, and around the tower in response to the long queues of people waiting to ascend.

Whether these additions would have enhanced the beauty of the Eiffel Tower or made it a steel monstrosity is an open question. What do you think?[6]

4 Lincoln Memorial

A pyramid in Washington, D.C.? The Washington Monument was modeled after an Egyptian obelisk, so why not? Ancient Egypt would have been amply represented in the nation’s capital had John Russel Pope’s design for the proposed Lincoln Memorial been accepted in 1912. Aside from an Egyptian-style pyramid, Pope also submitted a ziggurat based on Mesopotamian antecedents

Pope, the leading American neoclassical architect, was eager to be awarded the task of designing the memorial to the 16th President. However, the Lincoln Memorial Commission was advised by the Commission of Fine Arts to choose architect Henry Bacon instead. Pope was backed by a member of the Memorial Commission, Joseph Cannon. Thus both men submitted their designs, and eventually, Bacon’s Greco-Roman edifice carried the jury.

Though Pope’s designs were consigned to the archives, they nevertheless still stir the interest and imagination of those who ponder what might have been.[7]

3 Washington Monument

Plans to commemorate the first president began as far back as Washington’s lifetime, but it was not until 1836 that the Washington Monument Society awarded architect Robert Mills the honor of designing the memorial. Mills’s vision featured not only the now-iconic obelisk but also a colonnade and equestrian statue.

Unfortunately, construction was stopped in 1856 when anti-Catholics protested against the use of stone donated by Pope Pius IX. The unfinished monument sat idle for twenty years when Congress approved funds to resume work. But Mill’s original design was drastically pruned, eliminating the statue and the rotunda around the base altogether. Only the central obelisk remained intact.

Thus, what we see now must look bare and naked had Mills been alive to see it.[8]

2 Tower Bridge

Tower Bridge is the quintessential symbol of London, even being mistakenly called London Bridge by some ( the real London Bridge is, in fact, upstream of it). It was Sir Horace Jones’s answer to the challenge of spanning the Thames for foot and vehicular traffic without disrupting boats navigating the river. The double-leaf drawbridge completed in 1894 has since attracted millions of visitors the world over with its unique Victorian Gothic towers.

But a simple drawbridge was not the only solution offered. One intriguing and futuristic design was submitted by F.J. Palmer. The plan called for the roadway at both ends of the bridge to loop. While one side of the loop slides open to let a passing boat through, the other side stays closed to accommodate wheeled transport. Once the boat has entered the loop, the road behind it is closed, and the one in front of the ship opens to let it out. It was all pretty complicated but allowed both road and river traffic to move uninterrupted.

No one was sure if the plan would work, though, and it was ultimately abandoned.[9]

1 Reichstag

When Germany was unified and the Second Reich was proclaimed in 1871, a sudden flood of new lawmakers necessitated a larger building to hold the assembly. A design competition for a new Reichstag was announced in November of that year, and one of the entrants was British architect Sir Gilbert Scott. Though Scott would eventually miss out on the first prize, his submission was highly regarded by the German jury and was awarded second place.

Dominating Scott’s hybrid Gothic creation was a central dome or cupola 75 feet (23 meters) in diameter, with similar construction to the dome of London’s St. Paul’s Cathedral. Wings extending in four directions radiated from the dome. Obviously, Scott had a fondness for domes and insisted that the Reichstag should have one regardless of architectural style to lend it proper dignity.

Despite not winning, Scott had beaten most of the resident German architects and was justifiably proud of his achievement.[10]

]]>
https://listorati.com/10-iconic-structures-that-might-have-looked-radically-different/feed/ 0 9210
10 New Discoveries That Could Radically Change The Universe https://listorati.com/10-new-discoveries-that-could-radically-change-the-universe/ https://listorati.com/10-new-discoveries-that-could-radically-change-the-universe/#respond Wed, 20 Sep 2023 09:20:48 +0000 https://listorati.com/10-new-discoveries-that-could-radically-change-the-universe/

Science is all about discovery. Uncovering fascinating new truths about the world around us. Finding original ways to explain some of the universe’s biggest mysteries.

Even in this technological era, there is still so much that modern science cannot explain. Are there unknown forces that we cannot detect? What is dark energy? How does quantum physics work? Some of the most intelligent minds on Earth are trying to solve these elusive riddles. And, once in a while, they make a breakthrough.

In recent years scientists have made a number of incredible discoveries. After scouring the world of subatomic particles, researchers at CERN uncovered the Higgs boson in 2012. Three years later, astronomers made another spectacular breakthrough when they captured a burst of gravitational waves from two merging black holes. From dark matter to fourth dimensions, galactic cannibalism to quantum hyperchaos, here are ten astonishing new findings that could change the way we view the universe.

10 Facts You Didn’t Know About The Universe

10 Potential New Force Discovered at the Large Hadron Collider


We live in a world of mysterious forces. According to particle physicists, there are four known fundamental forces underlying the universe: gravity, the electromagnetic force, and the strong and weak interactions. But now, researchers at CERN reckon they might have discovered a new kind of force. If they are correct, it could alter their understanding of the quantum world.

For the past ten years, scientists have used the Large Hadron Collider to create B meson particles. A ‘B meson’ is a type of subatomic particle with an incredibly short lifespan. It quickly breaks down into other tiny particles, forming electrons and muons. First discovered in the 1930s, muons are similar to electrons only heavier. In theory, the B mesons should decay into electrons and muons at the same rate. But the CERN team found something rather different. Instead of decaying at the same rate, the B mesons were more likely to break apart into electrons.

This unexpected behavior hints at a new kind of quantum force. The researchers say they feel “cautious excitement” about their potential discovery. But they stress that more work needs to be done before they can present their findings with authority.

9 Massive Gravity Theory Could Explain Dark Energy


For years, cosmologists have been stumped by the expansion of the universe. The universe is swelling at a growing rate. No one is quite sure why. Scientists believe that dark energy is responsible for cosmic expansion. But, to this day, nobody has been able to explain exactly what dark energy is or how it works.

But that could be about to change. Swiss physicist Claudia de Rham has developed a trailblazing new theory that she reckons could shed light on the mysteries of dark energy. De Rham has put forward the idea of massive gravity—a theory based on Einstein’s general relativity.

Some particle physicists believe that gravity is controlled by tiny particles known as gravitons. Unlike regular particles, gravitons are thought to have no mass. But de Rham and her colleagues say this might not be quite right. They believe that gravitons do have mass. This might sound like physicists splitting hairs, but her theory could have radical repercussions when it comes to dark energy.

“One possibility is that you may not need to have dark energy,” de Rham explained. “Or rather, gravity itself fulfils that role.”

Right now, massive gravity is just a theory. But, as scientists develop more sophisticated ways to detect gravitational waves, they may be able to find some evidence to support their cosmic speculation.

8 Magnetic Field Photographed Swirling Around Black Hole


The Event Horizon Telescope is redefining astronomy. In 2019, the project made history when they released the first image of the outskirts of a black hole. Two years later, they updated their photo to include swirling magnetic fields circling the galactic giant.

The Event Horizon Telescope consists of a network of eight telescopes from around the world. Scientists combine data from all eight detectors to peer into space in a way never done before. In 2019, they produced an image of a supermassive black hole at the center of a nearby galaxy, 55 million light-years from Earth.

Electrons circle the black hole, emitting polarized light as they spiral around the edge of the cosmic whirlpool. By measuring the light, scientists calculated that the black hole’s magnetic field is 50 times stronger than the Earth’s. Certain black holes like the one in the photo are known to spit out jets of matter. But scientists have a limited understanding of how the process works. Analyzing the magnetic field gives astronomers a greater insight into black hole behavior.

“The polarized light has these curved swoops like a spiral,” explained Sara Issaoun, an astrophysics researcher at Radboud University. “This tells us that the magnetic field around the black hole is ordered, and this is really important because only an ordered magnetic field can launch jets – a scrambled magnetic field cannot do that.”

7 Dark Matter and Galactic Cannibalism


In the depths of the cosmos, 163,000 light-years from Earth, lies Tucana II. Tucana II is an ultrafaint dwarf galaxy. Scientists believe it was created in the early stages of the universe. A global research team recently discovered a cluster of stars near the fringes of the galaxy, which has provided a striking insight into its formation.

The team found nine new stars around 3,500 light-years from the core of Tucana II. This discovery confirms that the galaxy is much larger than they originally thought. Researchers observed the stars using images from the Australian SkyMapper telescope and data from Europe’s Gaia satellite.

The newly discovered stars are thought to be considerably older than the other stars in the galaxy. The scientists offer two main explanations for this. Either, they posit, the dwarf galaxy was formed by two younger galaxies merging. This process is known as galactic cannibalism. Or the stars are kept in position by the gravitational pull from Tucana II. If this is true, it means there is around four times more dark matter lurking in the galaxy than previously thought.

6 Quantum Hyperchaos


Quantum physics is known for being confusing and chaotic. Nobody quite understands what is happening in the miniature realm. But researchers have made a breakthrough discovery about the chaotic nature of quantum systems that could one day revolutionize quantum technology.

Their remarkable finding is known as quantum hyperchaos. In 2021, scientists discovered that quantum data storage systems become increasingly chaotic under laser light. Energy from the laser causes the system to behave haphazardly. But the scientists were surprised to learn that the extent of the chaos remains the same, no matter how big the system is. The team reckons that this could be used to improve the processing power of quantum computers.

5 Does Time Flow In Two Directions?


As children, we were all taught that time moves forward. But what if it moves backward too? It sounds like something from science fiction, but a handful of scientists believe it could explain the fundamental structure of the universe.

British physicist Julian Barbour has developed a model of the universe in which time moves in two directions. Most cosmologists would say that the universe originated with the Big Bang. But Barbour disagrees. He reckons that, rather than the start, the Big Bang is a midpoint from which time flows both forwards and backward.

Barbour is the first to admit that his ideas are unconventional, but then history is made by radical thinkers. Who knows, perhaps one day we might find signs of a separate time stream where time moves in reverse. A world where people age from old to young and have fond memories of the distant future.

4 Synthetic Fourth Dimension Helps Scientists Understand Quantum Physics


Over the past few years, scientists have begun to create their own completely new dimensions. In quantum labs, researchers are building synthetic realms that open up all kinds of reality-bending possibilities.

Scientists say these man-made dimensions are so odd that they are near impossible to imagine. Researchers have observed what they call the “ghostly effects of four-dimensional space.” Some have incorporated the extra dimension into electric circuits. There are now plans to go further, potentially making a fifth or sixth dimension, with scientists speculating that they might discover exotic new particles.

3 Ultracold Atoms Manipulate Light


In the 17th century, an incredible scientific idea was born. Dutch physicist Christiaan Huygens thought up a way to manipulate light using a thin electrical surface. Now, four hundred years later, scientists have brought Huygens’ theory to life.

Researchers at Britain’s Lancaster University have shown that certain elements like ytterbium and strontium can be used to maneuver beams of light. The team began by cooling the atoms down to a fraction of a degree above absolute zero. They then used lasers to manipulate the ultracold atoms, which affected the way they interact with light. By controlling the atoms with the laser, the scientists were able to direct and reshape beams of light. They say this remarkable discovery could help with the study of quantum mechanics.

2 Astronomers Find Traces of Early Universe Stars


In 2018, astronomers announced that they had picked up signals sent out by some of the earliest stars in the universe. They caught a faint radio buzz that is thought to have emanated from stars formed 180 million years after the Big Bang.

This might sound ancient, but in cosmology 180 million years is incredibly young. In fact, it is thought that the celestial bodies formed in a period known as the cosmic dawn, when the universe first emerged from total darkness. Scientists say this primordial buzz could provide clues about the nature of dark matter.

“Finding this minuscule signal has opened a new window on the early universe,” explained Judd Bowman, an experimental cosmologist at Arizona State University. “It’s unlikely we’ll be able to see any earlier into the history of stars in our lifetime.”

1 Ghost Particle at the Large Hadron Collider


The Large Hadron Collider is one of the most remarkable scientific instruments in the world today. It forms rare particles by accelerating subatomic protons to nearly the speed of light, then forcing them to collide. This high-speed particle smash produces all kinds of weird and wonderful creations – although they often only survive for a split second.

In 2018, researchers found hints of an unanticipated new particle in the collider’s data. They say it appears to be around twice the mass of a carbon atom, although nobody can properly understand what it is. The team started to speculate about a mysterious ghost particle after detecting an unusual excess of muons during their analysis. Muons are minuscule particles that are similar to electrons but heavier.

15 Fastest Things In The Universe

]]>
https://listorati.com/10-new-discoveries-that-could-radically-change-the-universe/feed/ 0 7659